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and the two equations that hold for the filler 

u, = 2/3E’,1~aV,Viqi- E,-'V,MF, + &'V,Qs - ci3qi + c&Q" = 0 

turn out not to be interrelated and lose their physical meaning. Therefore, the set of 
relations constructed in the previous sections does not allow formal passage to the model of 
a transversely-soft filler. The set of relationships taking account of temperature effects 
on the shell that is needed for this case can be constructed using the procedure described in 
/5/. 

1. 

2. 
3. 

4. 

5. 

6. 

7. 
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DEFORMATION OF A VISCOELASTIC CYLINDER FASTENED TO A 

HOUSING UNDER NON-ISOTHERMAL DYNAMIC LOADING* 

L.KH. TALYBLY 

The state of stress and strain is determined for a hollow long 
mechanically incompressible viscoelastic cylinder fastened to an elastic 
shell. Unlike other publications /l, 2/, the case of non-isothermal 
dynamic loading is examined. The cylinder material is considered to be 
physically non-linear and a physically linear viscoelastic medium whose 
mechanical properties depend considerably on the temperature. The 
temperature field is inhomogeneous and non-stationary. A change in the 
inner surface of the cylinder with time is allowed during the loading. 
The results of the solution enable safe working conditions for the 
structure under consideration to be found for definite temperature, 
mechanical, and geometric data. Some characteristic graphs of the 
contact stress as a function of time are presented in the case of 
instantaneous delivery of heat to the inner and outer cylinder surfaces. 

"PrikZ.Matem.Mekhan.,54,1,93-102,1990 
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1. Pomlation of the problem. A full circular thick-walled long cylinder of viscoelastic 
material, whose mechanical properties depends substantially on the temperature, is fastened 
along the outer surface to a thin-walled elastic shell. The cylinder is loaded by an internal 

pressure per (t) = pc,‘H (4 -I- PO" 0) and an external pressure pb (t) = PblH (t) -k pb” (t) and is 

subjected to the action of a non-stationary inhomogeneous temperature field Z' 0-9 t) = Tr (4 
X (t) + TS (r, 4 (E (4 is the Heaviside unit function: H(t) =O for t<O, and B(t) = 1 
for t >O). It is assumed that at least one of the quantities pi, pb‘,, and Tz(r) independent 
of the time t is non-zero. Moreover, Pa” to) = Pb” to) = o and TB(r, 0) = 0. It is assumed 
that the cylinder inner surface can change with time during loading: a, Q a(t)< b, where a, 
is the cylinder inner radius for t = 0 (a, = a (0)) and b is the outer radius. Plane strain 
conditions are assumed. 

2. mndmenta2 retationships and the soZutCon of the problem in the mse of a non-linear 
viscoetastie cytinder. We will use the following equations, found experimentally in /3/, as 
the relations between the deviator quantities of the stresses and deformations for a physi- 
callynon-linearviscoelastic medium with properties that depend very much on temperature: 

Here Sit =a~~-~&~ is the stress tensor deviator Dif = &ii - E8ij is the strain 
tensor deviator, I&, are Kronecker deltas, (J = UijSij/S is the mean stress. 
is the mean strain, and t?, = (*/$*j3*j)"' 

E _ si1SiJ3 
is the strain intensity. The constant GO and the 

function R (t) are the instantaneous shear modulus and relaxation kernel for a certain 
standard temperature T,, given in the temperature range of interest. The function VT = 

UT (T) is found experimentally for each material in conformity with its definition /3/. It 
possesses the following properties: ?r(T,) = 1, O< UT< 1 for T> T, and vT>l for T< T,. 
For the standard temperature T, Eqs.(2.1) reduce to the non-linear viscoelasticity equations 
obtained /2/ as a result of the quasilinear theory /4/. For the problem under consideration 
they take the form 

The cylinder material is assumed to be mechanically incompressible 

0 = 3aAT (AT = T - T,) (2.3) 

where f3 =3e is the relative change in volume, a =a(T) is the coefficient of linear 
thermal expansion, and T, is the initial temperature at which there are no stresses and 
strains. 

We will consider an unrelated problem;we will assumethat the heating ofthe cylinderdue to 
strain is negligibly small compared with the heating due to heat conduction. In this case 
the equations of motion, the boundary and initial conditions, and the geometric Cauchy relation- 
ships (the temperature field is considered to be known from the solution of the heat conduction 
problem) 

&l&r - (Ssq - i&)/r = pc3WdP (2.4) 
0, (a, t1 = --Pa (4 (2.5) 

(2.6) 

u ltBO = adat ItcO = 0 (2.7) 
8, = &ddr, sq = u/r, e, = 0 (2.8) 

are added to (2.2) and (2.3). 
Here u is the disqlacement, p is the density of the cylinder material, CJ is the 

contact pressure, E,, y*, p*, a, are the elastic modulus, Poisson's ratio, the density, and 
the coefficient of linear thermal expansion of the shell material, and k is the shell thickness. 
The boundary condition (2.6) follows from the relationships for a thin-walled shell and the 
displacement continuity condition on the boundary r=b /2/. As is seen from (2.8), it is 
assumed that e, = 0. We note that the solution of the problem will not be accompanied by 
additional difficulties if a, 
a,AT (b, t). 

is taken to be dependent on the time only, in particular a, = 

Taking account of relatonships (2.8) it follows from the compressibility condition (2.3) 
that 



where c (4 is an unknown function to be determined. Hence 

= c (t)iP - I (r, t) -I- 3aAT (r, t), E* = c (t)/r* + I (r, t) 

eu = (;@$ [(c (t)/? + I (r, t)fa + 3 (ctA.T (r, t))” - 3aAT (r, t) (c (t)!r* -+- 
I (r, t))l”* 

(2.10) 

Taking account of f2.9) and 12.10) we obtain an expression for a, -o,, from the 
relationships (2.2) and using it as well as (2.51 and (2.91, we integrate (2.41. We find 

r-‘J (r, t) dr + (2.11) 
ait1 

where 

Satisfying the boundary condition (2.6) and taking (2.9) into account, we arrive at the 
relationship 

qp -t k(t) c (t) = f(t) - + [Yl(b,t,c(t))-~~(t-Z-)Y*(h,T.C(~))dT~ 
0 

(2.12) 

When taking account of (2.91, conditions (2.7) are satisfied if 

c ($1 11-0 = (dc ~~~~~~~ It=@ = 0 (2.13) 

For E<t the relationship (2.12) is obviously valid. We replace 2 by E in (2.121, 
we multiply the right- and left-hand sides of this equality by t - f and integrate with 
respect to & between Cl and t using condition (2.13). We obtain 

Eq.(2.14) is a non-linear Volterra integral equation of the second kind. For T (r, t) = 
TO = T, = const and w = qpz it is identical with the equation obtained in /5/ when solving 
the corresponding isothermal loading problem. 



We will use the method of successive approximations to solve (2.14). We take the 
of the equation in the absence of the integral component: co 0) = fi 0) as the zero-th 
mation, where f,(t) is a known function defined above. Any subsequent approximation 
be determined by the formula 
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solution 
approxi- 
will 

(2.15) 

Therefore, the process of constructing approximationsreduces to evaluating quadratures. 

3. Proof of the convergence of the successive approzimations. The sequence of approxi- 
mations Ck (t) determined by (2.15) converqes uniformly in the sesment OGtdt, if the 
following sufficient conditions are satisfied /6/ 

We will show that if the following obvious conditions are satisfied 

0 <'pi (EJ Q di', ) dqi (E,J& I< di’ (di’, di’ = cons& i = I,‘4 

the functions F and fI in the integral Eq.(2.14) satisfy the convergence 
We will check that the first condition of (3.1) is satisfied. We have 

We will estimate each of the components on the right-hand side of (3.3) 

[FI] = (t - 7) k (a)lzJ = A, (t, t)lz], A, (t, T) = E, (t - r) h/[bsp (1 - vz,*)] 

(3.1) 

(3.2) 

conditions (3.1). 

$- -t_ r-'(2Z(r,r)- 3aAT (r,~)) ) +.s $$$$&I t_ +I 

Taking account of Eqs.(Z.lO)and the inequalities 1 Erp - e, I/ eu < 3/1/F we obtain 

Moreover 

I 2 I < ir + r2 II (p, t) I 
(relationships (2.9) and the inequality I u (rr 0 I4 1 are used). 

Taking account of (3.21, (3.6) and (3.71, we obtain from the inequality (3.5) 

(Fal GA, (G @(zl. -4, (t, r) = (t - r) :I (T) 

Similarly we can estimate 

[Fsl<.G(t.Q[~l, ~s(t,')==~IItE--)!(-E)f~(E)dE 

(3.3) 

(3.41 

(3.5) 

(3.3) 

(3.7) 

(3.3) 

(3.9) 
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where 5% (6) corresponds to &(E) on replacing 
Using the estimates (3.4), (3.8) and (3.9), 

satisfied, where 

4’ bY 4’ and d," by dz". 
we see that the first condition of (3.1) is 

(3.10) 
i=l 

We will now check that the second condition of (3.1) is satisfied. We first estimate 
each of the components on the right-hand side of (3.10) 

Since P>O and a (t) < b we have 

‘4, (6 T) < (t - 7) E, ,' Pzp, (1 - ~a*)] (3.11 

On satisfying the inequalities 

) aI < a1 = const, ) AT (r, t) 1 < L, = con&, r2 - a2 (t) < r2, uT > i (3.12) 

(the last inequality can always be satisfied by selecting the temperature T, in the definition 
of the function uT /3/), we obtain from (3.8) 

&(f,T)< ml@ - t), m, = 2G, .21/%ld" bS--,$ 9 1/i?a, d’L, + 2d’ b2 - a,= 

0 ! 
3- 

aoab2 + 2 a,ab i 

d’ = max (d,‘, d2’), d” = ma+ (d,“, d2”] 

Taking account of the inequalities 

(3.13) 

co 

B (t) > 0, 5 R (t) dt < 1 
n 

we can estimate A,(t,7) in an analogous manner from (3.9) 

A3(f,5)< ,,i,S!f-i)P(j-r)d;Cm,(rr) (3.14) 

Taking the estimates (3.11), (3.13), (3.14) into account in (3.10), we have 

A (t, r) B (t - r)[Zm, + E,/lb*p, (1 -v**)]] (3.15) 

Using the inequality (3.15), we see that the second condition in (3.1) is satisfied. We 
can now check that the third and fourth conditions in (3.1) are satisfied. We write 

t 

IS 
F (t. ~7 f, (7)) dr (< i sf I Fi(t, T, PI) I dr (3.16) 

ll i=l0 

and we estimate each components on the right-hand side. We will first estimate the function 

fl (9. We use the expressions for ‘zT(a(t),t) and f(t) presented above, the inequalities 
(3.12) and the inequalities 

The following estimates hold here: 

I FI (h T !I CT)) I < mg~* (t - 7). I Fi (t. T, f~ @));I < (t - z)(~T” + ma) (i = 1, 2) 

KP% G,bd’ma (b’- a$) 12G,bd’a,L, In b/a, 
m3 = +*b2 (1 _ ,,*a) I m4 = p*hQb= ( ln- 

p& 

(3.17) 
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By using the estimates (3.17) and evaluating the integrals on the right-hand side of 
inequalities (3.161, it can be shown that the third and fourth conditions in (3.1) are also 
satisfied. 

Therefore, all the conditions (3.1) are satisfied and, consequently, the function c (0 
can be calculated to any degree of accuracy by using the successive approximations (2.15). 
After having determined the function c (0, the displacement 11 @r G* the strain eI. (r. 1). em (r, t). 
and the stress % (rr t) are found from (2.9)-(2.11) respectively. The stress (TV is determined 
from relationships (2.21, and the stress oz in terms of or and 'Jo by the relationship of 
the theory of plane strain of an incompressible material: (rI= (%+u& 

4. Another method of constructing the approximations. This method is based on using the 
solution of the corresponding problem of the linear theory of thermoviscoelasticity. The 
necessity for this is caused by the fact that the rate of convergence of the processes can 
be different in different cases, which is not without distinction. 

We will represent the function (pi (E,,,'UT) in the form 'pi (E~/uT) = 1 - qi (E"/vT) (i = 1, 2). 
We assume a(t) G a, = const (in this case there are effective methods of solving problems 
of linear viscoelasticity theory /l, 2/j. Here p0 = const and k = con&. We introduce 
the notation 

kl+q, ja (q = j(t) - % [ j: r-’ (21 (r, t) - 3&T (rv t)) dr - 
0. 

t 
5 R (t - z) j r-l (21 (r, z) - 3aAT (r, .t)) dr dr] . 
II 0. 

The analogue of (2.12) will be 

9 + (k, + k) c (t) - k, i R (t - r) c (z) dz = 
0 

(4.1) 

h(‘)+xl(t~C(t))-~SR(t--dX*(r.e(r))dr 
0 

This equation is also solved by the method of successive approximations. The solution 

for $' = T#' = 0, is taken as the zero-th approximation from which #' = xi" =0 follows. 
This case corresponds to the solution of the thermoviscoelasticity problem for a medium whose 
properties are independent of the temperature. Determining the function c(o) (t) from (4.1) 

and (2.13) for #'=xF =0 we find E?' (r, t, c(O) (t)) by means of (2.10) . Hence q(l) (e’%~) , ,, 

become known and from them xi" (t, c(O) (t)) (i = 1, 2) as well. Taking account of ~2" in (4.1), 

we obtain an equation to determine CC') (t) that is analogous to the equation for the zero-th 
approximation. Therefore, continuing the procedure, to determine c (t) we have problem (4.1) 
and (2.13) in each successive approximation, where the right-hand side of (4.1) will be 
determined by the previous approximation. 

The convergence of the successive approximations is proved in this case as in the pre- 
ceding case since (4.1) is converted to the form (2.14) exactly as in the case mentioned. 
Conditions analogous to (3.2) should here be extended to the function 91 @Ju*) . 

5. Sob&ion in the case of a linear viscoetastic cylinder. 
material possesses properties of physical linearity. 

We assume that the cylinder 
In this case /3/ 

'pi (E,/VT) = 01 (T) (i = 1, 2) (5.1) 

The functions o,(T) and o,(T) characterize the influence of the temperature on the 
mechanical properties of the materials under instantaneous loading and on the rheonomic 
properties, and are determined experimentally for each material /3, 7/. 
properties oi (T,) = 1; 0 < oi (T) < 1 

They possess the 
for T > T, and ai (T) > 1 for T < Z’, (i = 1, 2). 

In the case under consideration relationships (2.3)-(2.8) remain in the same form in 
which they were used above. We solve problem (2.2), (5.1), (2.3)-(2.8) for 
T (r, t) = T, (r) H (t) (T, (r) #= 0, T, (r, 1) = 0) 

a (t) = a, = const, 

T is measured from the initial temperature T,. 
where we will assume that the temperature field 
Here p0 = con&, k = const, Z (r, t) = I, (r) H (t), 

where I, (r) = 3ree i nrT, (r) dr. We note that the displacement u and the strain El., Elp are 
0 
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determined by (2.9) and (2.10) even in this case, in which we should assume, a (t) = a,, AT = 
T = T, (r) H (t). The relationships (2.11) and (2.12) in the case under consideration are 
converted, respectively, to the form 

or = - pa(l) + p *ln i + wl(r)c(t) - (5.2) 

w2 (r) i R (t - T) C(T) da -:- g,(r) II(t) - gz (r) 5 R (g) d; 
0 I, 

d%(t) 
Poygc + k,c (t) := +(t) + w2 (b) 5 R (t - t) c (T) do 

” 

wi(r)= 46,s rm3a,(I’)dr, 2~ (r) = 2G, i p (r) wi (2’) dr (i = 1,2) 

l'(r) = r-'PZ,(r;'- M', 0")) k, = kp, + ii(b), q(t) = p,(t) - pb(t) + 

k,H (4 i- gz (6) f R (E) d:, 4 = kpo W”, (6) (1 t- ye) - b2Z, @)1- g,(b) 
0 

As we see, the problem is to determine the function c(t) that is a solution of (5.3) 
under the initial conditions (2.13). Before determining c (t) from (5.5), we will examine 
the case, that is of independent interest, when the cylinder material is linearly elastic. 
We set R(t) =O in (5.3) here, after which by using (2.13) we determine c 0) 

(it is assumed that p/ (t) % 0, p,,” (t) s 0). 
Taking (5.4) into account, we find from (5.2) 

We note that the dependence of the mechanical properties of the cylinder 
temperature is taken into account in (5.5) in terms of the function 01 V). 

(5.4) 

(5.5) 

material on the 

We will now examine the question of determining the function c(t) in the case of a 
linear viscoelastic cylinder material. Taking account of condition-(2.13), we apply a Laplace 
transformation to (5.3), from which we determine 

E (P) = $ (P):~,P* + k, - ~2 (b) R (P)I (5.8) 

For certain constraints on R(p) the construction of the original of expressions of the 
type (5.6) is presented in /2/. Without constraining R(p) the function c(t) can be found 
approximately using the well-known Schapery law /8/ 

c (Q = [PE (P)l,=,V,,tV 'tt"ll, (t)l(po + 4k,t2 - 8w, (b) PR (t)) (5.7) 

Taking (5.7) into account in (5.2), we obtain an approximate analytical expression for 
the stress (5,. 

We will assume for a qualitative analysis of the solution that the kernel is represented 
in the form of an exponential function R(i)= Aexp(--ht) (A>O,h>O). In this case (5.6) is 
converted to the form 

Let PI? Pa and pa be the roots of the polynomial P,(p). Then (5.8) is represented in 
the form of the sum of simple fractions 

A, = 

T (P) = (A + P) F(P)lP, (P) 
p, (P) = pap3 -; ?*P,P? -i- k,p + k& - A% (b) 

(5.8) 

M = PIPZ (PI - PZ) + PIPS @s - PI) + PZPS (~2 - ~3) 

the original c (0 will here have the form 
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(5.9) 

Having determined the function c(t) by means of (5.91, we find the displacement u, 

and the strain e,,@ by means of (2.9) and (2.10) for a (t) = a,, AT (T, t) = T, (r) H (t), and the 
stress or by means of (5.2). Afterwards the stresses oTlp and 0, are determined 

Ok = 0, + radar - paWat”-, (rl = (oz + a&2. 

In the case of an exponential kernel the solution obtained will be exact. 

6. The influence of the temperature fieZd on the change in contact pressure. The change 

with time of the contact pressure ot (b, t) is of interest in the problem under consideration. 
The behaviour of or (by t) under isothermal loading of the cylinder-shell system by pressures 

Pb (t) = O, PO (t) = Pa’ H(t) and pa (t) = 0, pb (t) = pb’H (t) is studied in /9/ when the cylinder 
properties are described by the simplest equations for a standard linearly viscoelastic body. 
Unlike /9/, we have considered the influence of the temperature field on the quantity 0, (b, t) 
on the basis of the solution obtained above. We take ,~=(t) z 0. pb (t) = 0. We assume that 
heat is supplied within the cylinder, which instantaneously creates a temperature T, 
interior surface, that is later maintained constant, while an instantaneously created 
temperature Tb is kept on the outer surface. The cylinder temperature field is 
represented in the form 

T (r, t) = [T, t (Tb - T,) 111 (rio,)lln (b/a,)] H (t) 

We assume cc = const, T, = T,, o1 =(T,iT)v. The numerical values of the parameters are 
given as follows: p.,jp = 0.2, IL/b = 10-2, b/a, = 3, Y* = 0.3, a,la = IO-', T,iTb = IO. 

c i9 5 L 0 f0 

Fig.1 

Using these data graphs of 

are constructed on the basis of 
represented in Fig.1. Curves 1 
respectively, and curves 3 and 

on its 
constant 
here 

Fig.2 Fig.3 

the dependence of u" = 0, (b, t)/(E,a,Tb) on to = (nao)-' t 1/a, 

(5.5) (the cylinder material is linearly elastic) and 
and 2 are constructed for E,IG, = IO3 and y=2,y=o 

4 for F,/G, = 10' and y = 2, y = 0 
. . 

respectively (y = 0 
corresponds to the case when the properties ot the cylinder material are independent of the 
temperature). Analogous graphs are presented in Fig.2 in the case when the cylinder material 
is linearly viscoelastic. We used (5.2) to construct them where (5.9) was taken for the 
function 
71 and 

c(t). In this case, besides the parameter values cited above, we took 
hi A = 2, T/iQa,h fp) = 1. 

02/01 = I /3, 

As we see, the contact stress a, (b,t) is compressive for E,IG, = 10s and the values 
y=o, y=2. However, when the shell elastic modulus is lo4 and more times greater than 
the cylinder shear modulus, the stress ar (b,t) can become tensile for the same values of y 
(tensile stresses are dangerous since they can result in peeling of the shell from the 
cylinder). Moreover, a sharp increase in the stress amplitudes with respect to the case y = 2 
is noted in Figs.1 and 2 for y = 0 as the values of E,IG, change from 103 to 104. A 
phenomenon characteristic for viscoelastic materials is observed in Fig.2: damping of the 
stress amplitudes with time. It follows from physical considerations that they tend to quasi- 
static solutions. We note that the damping rate of the stress amplitudes is less in the case 
when the viscoelastic material properties are independent of the temperature than when such 
a dependence exists. 

Graphs of the contact stress in the case of a non-linear viscoelastic cylinder material, 
constructed in conformity with the method examined in Sect.4 are represented in Fig.3. The 
functions cp 1 = rpz = 'p and VT were approximated in the form cp (8,) = BE,b, vT = (T,/T)*. It 
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was assumed B = 1, 6fJ = -_Y. Curves Z-3 correspond to the following values (p,6): (-0.2, IO), 
(-0.4, 5), (-0.2, 5). Results of a third approximation are presented (the results of the 
zero-th approximation correspond to the case y = 0 (p =0) in Fig.2). As we see, the stress 
amplitudes- are increased for times close to zero as the degreee of non-linearity of the 
material increases (while keeping the values of Sp fixed). Meanwhile, the rate of their 
damping is increased. The contact stresses do not become tensile for values of the parameters 
presented in Fig.3, and, consequently, they do not represent a danger for the cylinder-shell 
system. 

Finally, we note that all the parameters whose numerical values are given above sub- 
stantially influence the quantity or (b, t) . The methods presented for the solution enable an 
analogous computation to be made in each specific case. Also the o,, oz, E,, Ed and u can be 
computed at any other point of the cylinder-shell system. 
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